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SHEAR WAVES IN AN ELASTIC WEDGE1 

J.  D.  AchenbaclT 

Department of the Aerospace and Mechanical Engineering Sciences 
University of California,   San Diego 

La Jolla,   California 

ABSTRACT 

An elastic wedge of interior angle   xff    is subjected to spatially- 

uniform but time dependent shear tractions,   which are applied to one or 

both faces of the wedge,  parallel to the line of intersection of the faces. 

The transient wave propagation problem is solved by taking advantage of 

the dynamic similarity which characterizes problems without a fundamental 

length in the geometry.    The shear stress   Tfl       is evaluated,  and it is oz 

found that the singularity near the vertex of the wedge is of the form 

r /(1-x)   •    The results show that the stress is not singular for 

interior angles less than   ff .    Asa special case we obtain the dynamic 

shear stress generated by the sudden opening of a semi-infinite crack in 

a homogeneously sheared unbounded medium. 

The results of this paper were obtained in the course of research 
sponsored under Contract No. N00014-67-A-0109-0003, Task NR 
064-496 by the Office of Naval Research,   Washington,  D. C. 

Visiting Associate Professor 
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INTRODUCTION 

Problems that are concerned with the propagation of small de- 

formations  in linearly elastic solids are generally solved by means of 

Fourier transform techniques.     If the region in space is unbounded,  and if 

no characteristic length of the geometry enters the formulation,   it may 

reasonably well be expected that a closed-form solution can be worked out. 

In obtaining this solution the use of Fourier transforms becomes,   however, 

less attractive for more complicated regions in space,   such as wedges.    In 

this paper we consider,   therefore,   an alternative method of solution which is 

based on the dynamic similarity that characterizes problems without a funda- 

mental length.    This method,  which has been used extensively in supersonic 

aerodynamics,   [1], [2] , was applied by Miles to wave propagation problems 

in homogeneous elastic solids [3] . 

We consider the transient waves generated by spatially uniform 

but time dependent shear tractions which are applied to one face of a wedge 

in a direction parallel to the line of intersection of the faces.    The other face 

is assumed free of surface tractions.    Once the solution to this problem has 

been obtained we can,   for arbitrary vertex angles,   easily construct the 

solution for the cases where both faces are subjected to shear tractions,  or 

where one face is clamped.    As an interesting special solution we obtain the 

dynamic shear stress generated by the sudden opening of a semi-infinite 

shear crack in an unbounded medium.    For the general case special attention 

is devoted to the singularity of the shear stress near the vertex of the wedge. 
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The transient diffraction of plane waves by a wedge in an acoustic 

medium was treated earlier by essentially the same method by Miles [4] 

and KeUer and Blank [5] . 



■■■ 

GOVERNING EQUATIONS 

A homogeneous,   Isotropie,  elastic wedge of interior angle   xtr, 

see Fig.   1,  whose faces are defined by   9 = 0    and   6 = xff ,   respectively, 

is subjected on the face   9 = 0     to a uniform  but time dependent shear 

traction   T«    .    For the time being we assume   x > ^ ; the case   X < ^    will 

be considered later.    The shear traction generates horizontally polarized 

shear motion in the z-direction only,  which is governed by the equation 

^^/^WXJ,1       dw_löw 

r    d9     c    ar 
r   dr v    or (1) 

where   w     is the displacement in the z-direction,    c = (/i/p)*    is the velocity 

of shear waves,  and   r ,   9,   z     are cylindrical coordinates.    It is assumed 

that the wedge is at rest prior to   t = 0 

t < 0        w(r,9, t) =  w(r, 9. t)   H  0 . (2) 

The displacement field generated by a uniform surface traction of arbitrary 

time dependence can be obtained by Duhamel superposition,  once the dis- 

placements for a surface traction varying with time as the Dirac delta 

function have been found.    We thus first consider the following boundary 

conditions 

s=0'-0:   ^ = fli = T. 6<" 

••■«.'»*   f,.-«li 

(3) 

(4) 



The problem at hand consists of finding a solution of Eq.   (1),   satisfying 

the initial conditions (2) and the boundary conditions (3) and (4). 

Some observations on the pattern of waves propagating in the 

wedge can be deduced from elementary principles of wave propagation. 

The surface traction (3) generates a plane wave with constant displacement 

c T 1 
w,   = -     

This wave is called the primary wave,  and in Fig.   1 its wavefront at an 

arbitrary time   t     is indicated by BD.    Since the wedge is at rest prior 

to time   t - 0 ,   the medium is undisturbed ahead of the wavefront BD,  anci 

as discussed above,  the displacement is constant behind it.    In addition to 

the primary wave,   the vertex of the wedge,   as well as the non-uniformity 

of the surface traction across the vertex,   generates a cylindrical wave 

with center at O .    Since the displacement is continuous across the cy- 

lindrical wavefronts we have for   x     £  : w - 0    along BC. 

There is no characteristic length in the problem,   and it is thus 

to be expected that the solution shows dynamic similarity,   i. e. ,   the dis- 

placement is a function of   r/t    and   6 .    It is then expedient to introduce 

as a new independent variable 

s ■ r/t 

As a function of   s    and   0    the displacement   w(s, 9)    satisfies 

(5) 

(6) 

s2(i      *   )1J^ +s(l-iV) ^+ ^^  0 
c2 d7 ^   as   äe2 (7) 



For   s < c    ,  Eq.  (7) is elliptic.    Upon introducing Chaplygin's transformation 

9 =- cosh-1 (^) . (8) s 

a2w + ij* = o        . (9) 

Eq.   (7) reduces to 

as      ae 

The solution of Laplace's equation may be written as the real part of an 

analytic function   x(B>6) • 

wtR.e) = Re x(8,e) . (10) 

For   s > c ,  Eq.   (7) is hyperbolic,  and may be reduced to the canonical 

form by the transformation   s = c sec a . 

From Fig.   1  the region in which Eq.   (7) is elliptic is now identified 

as the cylindrical region ABC.    All that now remains to be done is to find a 

harmonic function   w(9, B)     in the segment   0 ■c B  ^ xtr ,   s ^ c     satisfying 

boundary conditions which for   x " ^    take the form 

6 =  0 ,    s s c  :  |^ = 0 (11) 

• c Tl 
s  =  c,0<e«£:w  = w.   =-  (12) 2 1 (x *     ' 

s  = c.£-i.es:xir:w = 0 (13) 

e = xtr.s'-ic:|^ = 0 . (14) 

In Eq.   (11) we have used that for   t > 0     the surface traction has returned to 

zero,   see Eq.   (3).    The function   w(0,e)   can be obtained in several ways: here 



we elect to map the segment   s^c,Os0Sxir     on the half-plane   TJ^ 0 

by a conformal mapping which was introduced by Craggs [2] 

C = 4 + iT)= sech [(a+ie)/x] . (15) 

Equation (15) can also be written as 

C = [cosh —  cos — + i sinh —  sin — ] (16) 
XX XX 

The mapping of the segment   sSc.Osgsxff    on the   £    plane is shown 

in Fig.   2,   where the positions of the various points are indicated.    The 

boundary conditions (11)-(14) are converted into conditions on the real axis, 

and we find for   x .>   1 

III*» :      i|-0 (17) 

1^4^ l/cosj-  :       w  = wj (18) 

t it    1/cos J. :       w  =  0 (19) s 2x 

| * -   1 :       w  =  0 . (20) 

For    1 > x   '^    the point   B     is located on the negative real axis,  and (17)- 

(20) mast be modified accordingly. 

In this paper we are interested in the stresses,   in particular in 

the shear stress   Tfl    .   which msy be written in the form 0z 

^•?««t|flf] <2') 
According to (17)   d\/6Z    is real for    1^ | * 1  ,  and from (18)-(20) we con- 

clude that   d^/dC    is imaginary elsewhere along the real axis,  except at 

the point 
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1= € B 
l/cos^. 

2 x 
(22) 

At this point   Re \    is discontinuous,  and   Re d x/d £    is a delta function, 

which implies that   d\/d£    has a simple pole at   £ =  £R   .    An expression 

satisfying the foregoing requirements is 

B 

(C2-l)*     C' ^B 
(23) 

The constant     B     is found by integrating counterclockwise along a small 

semi-circle around     C = ^D   »  and equating the results to   - w.   .    We obtain 

w. 

••■^«ti ff M 2x 

From Eq.   (15) we compute 

(24) 

■§% 

tanh (i + i i) 
2.     x        x 
x   cosh (^ + i -) 

'x        x' 

(25) 

Upon substitution of (16) and (24) into (23),   and subsequent substitution of 

(23) and (25) into (21) we obtain 

cT,    sin(J^) 1 
ez ffX 

Re {i/[ cos cosh(i+ i i)]) (26) 

The real part can easily be evaluated,  and the result is 

6z 
w here 

cT,    sin(f-) 

't*h-*' 
sinh — sin — 

  X X      

(cos    ■?-   - cosh | cos ^)2+ (sinh I sin ^)2 

2x X X ' X X 

(27) 

(2 8) 



Equation (27) represents the stress within the cylindrical wavefront,    r -^ ct . 

For    r s ct    and   0 <: 6 ^ 7    we have 

T  fl = T, cos 9 6(t - - sin 6) . (29) 

It is of particular interest to investigate for   t > 0     the singularity 

of   Ta       as   r -• 0 .    To this end we evaluate asymptotic expressions for 

sinh(0/x)     and   cosh(8/x)     for small —r .    Using a well-known representation 

for   cosh      ,  we find from (8) and (6): 

Equation (30) is subsequently used to write 

(30) 

cosh-^r^n + D-^) ]*i x + (f)x{i + [i-(^rr}x] OD 

sinhi^[(^)X{l + [l-(^)2]*]"X-(f)X{l + [l-(^)2]ilX] • (32) 

Thus for   (-^-l <<   I cl 

1     1.  1 
cosh i ~ (^)x   2X (33) 

sinh j -- (^)x 2X . (34) 

For   x ^ ^    the singularity in the shear stress is thus obtained as 



We note that the singularity vanishes for   9=0     and   9 =  x ff .  and reaches 

a maximum for   6 =  xff/2 .    The singularity disappears altogether if   x - 1 

The shear stress is thus singular only if the interior angle of the wedge ex- 

ceeds   ff . 



BOTH FACES SUBJECTED TO SHEAR TRACTIONS 

If the faces defined by   6 =  0     and   6 =  Xff    are subjected to shear 

tractions   T0    - T.  6(t)     and   Tä    ■ T, 6(t) ,   respectively,   the shear stress 
ÖZ 1 ÖZ C s 

T0       is obtained by simple superposition.    We obtain for   r ^ ct 

Qz 

sin (^-) 
c '2x 

^lFl<ft'0) + T2F2<H'e^ (36) 

where    F.(r/ct, 6)     is defined by (28),   and 

9 6 sinh — sin — 
F2(H,0) =';       tT"       Tl 9.2 x/ . ,   B   .    TJ (cos ■=— + cosh — cos —)    +(sinh — sin —) 2 x x x x x 

(37) 

In addition,  we have for   r s ct    and   0 ^ 9 -s ff/2     the plane wave (29), 

and for   x*r     6 i XW  - *     we have 

T0z = T2 cos (xff- 6) 6[t- -^ sin(xff-e)] (38) 

It is clear that for this case the singularity is of the form 

T J £_ (2ct)   x  sin(ff j sin(ö)  r* 
6z ff  x 2x X (39) 

Thus,   the singularity vanishes if the two shear tractions are of the same 

magnitude and sense,   i.e.,   if   T.   - - T ?  . 
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THE SHEAR STRESS FOR STEP SURFACE TRACTIONS 

It is of considerable physical interest to compute the dynamic 

stresses for the case that the surface traction varies as a Heaviside step 

function, 

e =  0 ,   r ;> 0   :     %,  « Tj l(t) (40) 

6 =X ff,  r ;>   0    :      T^   =   0 . (41) 

ff For   0 <.      ± j    the shear stress   T«       is now obtained as the sum of the 

integrals of (27) and (29) 

cT,    sin(r£-) t 1 2x    ,,,    r,   f TQ^T^oseKt.-sine)--^  -^^Kt-f) J   F^^.eidv    .      (42) 

For   9 ä "I     we obtain 

cT.     sin(^-) t 1 2x     ,/.    r Tez=-— -in^ 1(t-f> r Fi£'ö)dv       • H3) 

The behavior of   T-       for small values of   r     is found by intro- 

ducing the new variable 

cv 

The integrals in (42) and (43) then become 

sin(|-) . ct/r 
fi.'-Ti-rrLl<T-1>I1   F1(p1e)dp     . (45) 
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We are interested in approximating (45) for large values of   ct/r .    For 

large   p    the   co8h[ß(p)/x]    and   8inh[S(p)/x]    may be approximated by, 

see (31) and (32). 

cosh S- ~ p* 2X (46) 

sinh E.~. p* ZK . (47) 

The integral can now be evaluated, and for   x 2 ^ ,   X  ^ 1 • and   r/ct << 1 

we find 

V ~Ä) <2cl)'*tl ""'fx' ""•I1 rJ''       ■ (48, 

For   w =  I     and    r/ct << 1     we obta in 

We note that no singularity occurs if the interior angle of the wedge is less 

than   tf   . 
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SPECIAL CASES 

The integrals in (42) and (43) can be evaluated with particular 

ease for three special values of   x:   x - 0.5 , x =   1     and   x = 2 . 

For   x = 0. 5    we have a quarter-space subjected to uniform 

surface tractions.    From Eqs.   (27) and (42) it is immediately noted that 

the cylindrical wave vanishes,  as it should, and we thus are just left 

with the plane primary wave. 

The case   x = 1     is concerned with a half-space.    We assume 

uniform surface tractions that are of different magnitudes for   9=0    and 

6 = ff  .   respectively.    Equation (36) then reduces to 

i   (Ti +T,) sinh | sin 6 
Tfl7 = - 7 7 ^ 1 Z  • (50) 

ez
 r *      cosh^S- sin   9 

Equations (31) and (32) become 

coshfl =   — (51) r 

8inhB = -[(^r)2-  1]^ • (52) 

Thus for   r s  ct : 

c   {Tl  +T2)(sin 8)[(ct)2.  r2]* 
T6z = *  77~J—2   . 17,  (53) 

L(ct)   - r    sin  0] 

The cylindrical wave vanishes,   of course,  altogether for   T,   = - T-,  .    For 

r/ct << 1     we recover the behavior shown in Eq.   (39) for   x = 1  . 

13 



For step surface tractions the integration of (36) yields 

t    ,   2  . 2  2.4        /  2 . 2 2.4 
(54) 

where we have introduced the slowness   b , 

b = - 
c (55) 

This integral can be evaluated to yield for   br s t 

T.+T 
lez 

r    ^      , n  ..  r(t2-b2r2)^ ♦ t  -, {  sin 9 in br 

i -    ,   - 1 pt sin 6 - br T -4 cos 9 sin      [-7—J:^ 1—x] B Lt - br sin 9 

X fl    .   - 1  p t sin 9 + br -| i 
-^cos 9 sin       LTTT 1—sJi E Lt + br sin 9 (56) 

For   9^-2     the shear stress is then obtained as 

T0z = Tj cos 9 l(t-br sin9) + U    l(t-br) (57) 

For   9 ^ T    we have 

T0    = - T? cos 9 l(t-br sin9) + Ifl    l(t-br) 9z gz (58) 

For   br/t <<1     the behavior is as indicated by (49). 

The case   x = 2     corresponds to a semi-infinite slit in an un- 

bounded medium subjected to different shear tractions on the two faces.  For 

Tj   =   T2   =   T (59) 

Eq.  (36) reduces to 
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£ 2^   T sinh ^ 9 sin j 6 (1 f cosh B + cos ft) 

(cosh 8)    - (sin 6 ) 
(60) 

For   x = 2 ,  Eq.   (32) becomes 

6inhie= - 2_*(^ -  1)^ (61) 

After some further manipulation we then obtain for   r < ct 

f,-*iS*    nirlüilLü      sir^(i-9) 
T
Qz~ n { r  ' i}    lt-(r/c)sin0   '    t+(r/c) sinö } (62) 

The behavior for   r/ct <<1     agrees with what is obtained from Eq.   (39) 

for   x = 2 . 

The integrals to determine the stress for step surface fractions 

can again be evaluated explicitly,  and we obtain for   br ■?; t 

f2r^   ^i. 
«T)'       2T = {(t-br)^+[br(l-sin9)]^tan"1[br|-^ine)]*}cos»(^-e) 

{(t-br)*+[br(l+sine)]*tan-1[¥7^T17^]*}sin^(|-e)     (63) 

where   T     is the applied surface traction.    For   0 ± 6 - j    and   2 tr <; 8      -^ 

the shear stress   Ta       is obtained as 
il 

Ta^  = T cos P l(t-br sinfl) + Jfl    l(t-br) (64) 

ff ^ o ^ 3ir 
2 For   2. s 6 s ^y-   we find 

Tez ' Jez 
1(t-br) (65) 

If   r/ct <<   1     the singular behavior is of the form 

ITT 

2T r ~ ify*   ["•♦<?••)■ ■in|(f-«)) 
15 

(66) 
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which agrees with (48). 

Equations (64) and (65) when superposed on a uniform shear stress 

T      = -  T     yield the solution for the stress   T«       due to the sudden opening yz 7 Bz re, 

of a semi-infinite crack in an unbounded medium which was in a state of 

uniform shear prior to fracture.    As is common in crack problems we find 

that the stress is singular near the crack tip as   r~ * . 
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CONCLUDING REMARKS 

Although only the case   x ? 0. 5     was treated here,   it is clear 

that wave propagation in wedges with interior angles less than   W2     can 

be treated by using superposition in conjunction with symmetry or anti- 

symmetry properties.    Thus if the face   6 = x tr (0.25 ^ x    < 0. 5)     is free 

of traction,  and   8=0     is subjected to   T,  6(t) ,   we can simply use (36) 

# s;t 
with   x = 2x    ,  and   T^ = - T.     to obtain the solution.    If the face   9 = x IT 

is clamped,   i. e. ,  w s 0   ,  we substitute   x=2x       andTp^T,      in Eq.  (36). 

For   x      < 0. 25 the solution for   0. 25 s x     < 0. 5     has to be used in the 

just described procedure. 

It is finally concluded that the method of homogeneous functions 

in an efficient method to study the dynamic response of an elastic wedge 

to spatially uniform shear tractions.    For surface tractions varying in 

time as Heaviside step functions it was found that for interior angles   xff   , 

the singularity of the shear stress   Ta       is of the form   [r*        '      /(l-x)l, 

which shows that the stress is singular only for   x > 1 . 
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Fig.   1.    Wave fronts at time   t 

c t 
• 

-I S^r-C 
('"£)■' 

FiR.  2.    The   C-plane for   x      1 
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